Trans-splicing and operons.
نویسنده
چکیده
About 70% of C. elegans mRNAs are trans-spliced to one of two 22 nucleotide spliced leaders. SL1 is used to trim off the 5' ends of pre-mRNAs and replace them with the SL1 sequence. This processing event is very closely related to cis-splicing, or intron removal. The SL1 sequence is donated by a 100 nt small nuclear ribonucleoprotein particle (snRNP). This snRNP is structurally and functionally related to the U snRNAs (U1, U2, U4, U5 and U6) that play key roles in intron removal and trans-splicing, except that it is consumed in the process of splicing. More than half of C. elegans pre-mRNAs are subject to SL1 trans-splicing. About 30% are not trans-spliced at all. The remaining genes are trans-spliced by SL2. These genes are all downstream genes in closely spaced gene clusters similar to bacterial operons. They are transcribed from a promoter at the 5' end of the cluster of between 2 and 8 genes. This transcription makes a polycistronic pre-mRNA that is co-transcriptionally processed by cleavage and polyadenylation at the 3' end of each gene, and this event is closely coupled to the SL2 trans-splicing event that occurs only approximately 100 nt further downstream. Recent studies on the mechanism of SL2 trans-splicing have revealed that one of the 3' end formation proteins, CstF, interacts with the only protein known to be specific to the SL2 snRNP. The operons contain primarily genes whose products are needed for mitochondrial function and the basic machinery of gene expression: transcription, splicing and translation. Many operons contain genes whose products are known to function together. This presumably provides co-regulation of these proteins by producing a single RNA that encodes both.
منابع مشابه
Trans-splicing and operons in C. elegans.
About 70% of C. elegans mRNAs are trans-spliced to one of two 22 nucleotide spliced leaders. SL1 is used to trim off the 5' ends of pre-mRNAs and replace them with the SL1 sequence. This processing event is very closely related to cis-splicing, or intron removal. The SL1 sequence is donated by a 100 nt small nuclear ribonucleoprotein particle (snRNP), the SL1 snRNP. This snRNP is structurally a...
متن کاملOperons Are a Conserved Feature of Nematode Genomes
The organization of genes into operons, clusters of genes that are co-transcribed to produce polycistronic pre-mRNAs, is a trait found in a wide range of eukaryotic groups, including multiple animal phyla. Operons are present in the class Chromadorea, one of the two main nematode classes, but their distribution in the other class, the Enoplea, is not known. We have surveyed the genomes of Trich...
متن کاملTrans-splicing and operons in metazoans: translational control in maternally regulated development and recovery from growth arrest.
Polycistronic mRNAs transcribed from operons are resolved via the trans-splicing of a spliced-leader (SL) RNA. Trans-splicing also occurs at monocistronic transcripts. The phlyogenetically sporadic appearance of trans-splicing and operons has made the driving force(s) for their evolution in metazoans unclear. Previous work has proposed that germline expression drives operon organization in Caen...
متن کاملGenome-wide analysis of trans-splicing in the nematode Pristionchus pacificus unravels conserved gene functions for germline and dauer development in divergent operons.
Discovery of trans-splicing in multiple metazoan lineages led to the identification of operon-like gene organization in diverse organisms, including trypanosomes, tunicates, and nematodes, but the functional significance of such operons is not completely understood. To see whether the content or organization of operons serves similar roles across species, we experimentally defined operons in th...
متن کاملEukaryotic operon-like transcription of functionally related genes in Drosophila.
Complex biological processes require coordinated function of many genes. One evolutionary solution to the problem of coordinately expressing functionally related genes in bacteria and nematodes is organization of genes in operons. Surprisingly, eukaryotic operons are considered rare outside the nematode lineage. In Drosophila melanogaster, we found lounge lizard (llz), which encodes a degenerin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- WormBook : the online review of C. elegans biology
دوره شماره
صفحات -
تاریخ انتشار 2005